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Note 

Derivation of Implicit Difference Schemes 
by the Method of Differential Approximation 

In this paper we use the continuum differential approximation of a time discrete 
difference scheme to show how one can derive simple operators that approximate 
fully implicit time differencing of a system of partial differential equations. This type 
of approximation has been considered before and has been called “semi-implicit” 
[l-3]. It generally involves adding implicitly and subtracting explicitly some simple 
operator whose matrix form is easy to invert. This modifies the truncation error of 
the underlying difference scheme and, as far as time error is concerned, results in 
unconditional linear stability just as for a fully implicit scheme, but for much less 
work. The question of accurate reproduction of the original continuum system of 
equations must of course still be considered; however, numerical stability is assured. 
We show how the method of differential approximation [4-63 can be used to 
derive semi-implicit operators for any given system of equations. In this way we 
show explicitly how such operators arise from the truncation error of a “brute 
force,” fully implicit differencing in time. This sheds light on the fundamental 
meaning of implicit differencing and allows the semi-implicit approximation to be 
easily evaluated relative to a fully implicit scheme. Unfortunately, the term “semi- 
implicit” in the literature does not have an accepted meaning. As will be seen, a 
more descriptive term for this type of procedure is “approximately implicit.” 

In the method of differential approximation one analyzes a finite difference 
scheme by converting it to a continuum set of equations by a simple Taylor series 
expansion keeping an “appropriate” number of truncation error terms. This, the dif- 
ferential approximation, represents the finite difference scheme and shows how it 
corresponds to the original system to be solved. It is a continuous system of equa- 
tions and thus allows a direct comparison of the finite difference scheme to the 
original “primitive” system of equations. The method of differential approximation 
can be used to study the effects of nonconstant and nonlinear coefficients [4]. In 
the case of constant coefficients a direct correspondence with the usual Fourier 
series analysis of difference schemes can be established [S]. Often, instability of an 
unstable difference scheme will show up as ill-posed diffusion in the lowest order 
terms of the differential approximation. Some algebraic manipulation may be 
required to see this [4, 61. 
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The answer to the question of how high in degree truncation error terms retained 
in the differential approximation to a finite difference scheme should be is easily 
ascertained by the following consideration. For a differential equation to faithfully 
represent the continuum limit of a discrete difference equation it must require the 
same initial and boundary data as the difference equation; that is, it must be of the 
same degree in all of its derivatives. If the difference equation, and thus its differen- 
tial approximation, is of higher degree than the primitive differential equation it is 
to represent (usually this is done to obtain a higher order of approximation), then 
extra numerical boundary or initial conditions are needed. Such schemes will con- 
tain spurious computational solutions that have nothing to do with the primitive 
differential equation. These solutions may influence the stability and accuracy of the 
difference scheme and may explain why formally higher order difference schemes in 
some instances give poor results. Since the differential approximation to the dif- 
ference scheme, as defined above, contains the additional computational solutions, 
it gives a way of analyzing their properties. Indeed, in this case the differential 
approximation will contain the primitive differential equation as a factor [7]. In 
this paper we will be concerned only with difference schemes whose degree is no 
higher than that of the continuum equations they represent so no spurious com- 
putational solutions occur. 

To briefly illustrate what has been said about the method of differential 
approximation consider the first-order accurate, time explicit approximation to the 
diffusion equation, written as 

(g)“+1’2cD (!g. 

Here the superscript denotes time centering. The 1.h.s. of Eq. (1) stands for 
(U”+’ - u”)/dt, and is second-order accurate in time. The spatial differencing of the 
r.h.s. is taken to be second-order accurate in space and leads to terms of higher 
degree than the second in the truncation error and is thus suppressed. Since the dif- 
ferential approximation is restricted to require no extra data than the original dif- 
ference equation (which here matches that of the primitive differential equation) the 
only possible additional term is a3u/at 8x2. Using ZP = u”+ ‘I2 - (At/2)(&@)n+ ‘I2 in 
the r.h.s. of Eq. (1) yields 

(2) 

as the differential approximation to the difference scheme. Note that, a Fourier 
expansion of the spatial part of Eq. (2) as exp(ikx) shows that the coefficient of the 
1.h.s. vanishes when Dk2 At = 2. Or, using -4/Ax2 as the value of a2/ax2 in Eq. (2), 
which is appropriate for the 2 Ax wave on a uniform spatial grid, this gives the 
usual stability criterion for an explicit time integration of the diffusion equation. 
For implicit differencing the superscript n simply goes to n + 1 on the r.h.s. of 
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Eq. (1). This merely changes the sign of the dt term in Eq. (2). Then the stability 
restriction due to the 1.h.s. of Eq. (2) disappears. Thus we see that the differential 
approximation to the difference scheme, Eq. (2), does mimic its stability properties, 
as required. 

This example shows that if the difference scheme is not of higher degree (“order” 
is used in this paper only to denote size of truncation error) than the primitive dif- 
ferential equation it is to approximate, then its differential approximation can only 
consist of the primitive differential equation (for consistency) and, as truncation 
error terms, mixed derivatives that are combinations of the terms appearing in the 
primitive equation. Only these terms require no additional initial or boundary con- 
ditions. Note also that in order to directly obtain the differential approximation, 
Eq. (2), it was necessary to expand Eq. (1) about the n + 4 time level rather than the 
II level, which would have required an additional transformation to bring it into the 
form given as Eq. (2). 

Next we turn to our main subject-the derivation of approximately implicit dif- 
ference schemes by means of the method of differential approximation. We will 
work a simple example in detail and then quickly generalize to more complicated 
and relevant cases. 

Consider the scalar, one-dimensional, second-degree wave equation written as the 
coupled first-order system 

av au 
z=CX’ (3b) 

where c is the wave speed. A “brute force” fully implicit first-order accurate time 
differencing of Eqs. (3) can be written as 

(da) 

(4b) 

where the superscripts have the same meaning as before and the second-order 
accurate, centered spatial differencing has once again been suppressed. Since we 
require that the degree of the difference scheme and its differential approximation 
agree, only terms of the form a2/at ax may be added to Eqs. (4). Taylor expanding 
the r.h.s. of Eqs. (4) about the n + 4 time level gives as its differential approximation 

at4 c At a% av 
-- 
at 2zFx=cz’ (5a) 

au cdt ah au -- 
at Tatax’% (5b) 
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Next we rewrite Eqs. (5) in an equivalent but decoupled form. To this end we 
time differentiate Eq. (5b) and using Eq. (5a) obtain 

&jt$m !! &! 
0 a2 at ax2’ 

But this equation can then be rewritten as the coupled system 

au a0 
~="~, 

I-...-- 

(6) 

0) 

(7b) 

Equations (7) are exactly equivalent to Eqs. (5); that is, they represent an 
approximation to an implicit differencing scheme in the lowest order terms which 
comprise the differential approximation. Notice that if we had used the primitive 
system, Eqs. (3), to directly transform the mixed derivatives in Eqs. (5) we would 
only have obtained the lowest order diffusion terms and would have missed the 
essential term a At2 in Eq. (7b). This illustrates the important point, stressed in 
Ref. (5), that one must work directly with the differential approximation to the 
difference scheme and not use the primitive system to simplify it to a low order 
nonuniformly. 

We now wish to dwell on some properties of Eqs. (7). First, note that an explicit 
time differencing of Eqs. (3) (n + 1 + n in Eqs. (4)), known to be numerically 
unstable, also would lead to Eqs. (7) except that the sign of the dissipative term on 
the r.h.s. of Eq. (7b) would be negative, indicating instability as ill-posed diffusion, 
However, if one drops the dissipative term in Eq. (7b) then Eqs. (7) are still 
unconditionally stable and represent a second-order accurate approximation to 
Eqs. (3), reminiscent of a time-centered differencing. To see that Eqs. (7) lead to an 
unconditionally stable scheme consider them differenced by the time-staggered leap- 
frog scheme with the dissipative term dropped. This gives 

U”+1/2-Un--1/2-CAt - @aI 

(8b) 

The last two terms on the r.h.s. of Eq. (8b) are the usual “semi-implicit” terms- 
added implicitly and subtracted explicitly. We see that they naturally arise as a 
piece of the implicit differenced form, Eqs. (4), given directly by Eqs. (7), in fact, as 

581/96/2-17 
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the only essential part. Leapfrog time differencing on Eqs. (3) yields c2k2 At2 < 4 as 
a stability criterion. Equations (8) modify this constraint to be 

k2c2 At2 
1 + k2c2 At214 

< 4, 

which is readily seen to always be satisfied independently of At. This brings out the 
important point of implicit difference schemes; namely, they stabilize mainly by 
means of phase error, diffusion is subsidiary. That is, an implicit difference scheme 
compresses all time eigenvalues of a system of equations to be inside a radius of 
l/At in the complex l/t plane. This always results in a “stabilizing denominator,” 
or in physics terms, a k-dependent mass. ’ The point is that the semi-implicit 
approximation does the same thing, only Eqs. (8), being more diagonal, are easier 
to invert than the fully implicit scheme given by Eqs. (4). The diffusion term in 
Eq. (7b) may be kept to damp unresolved spatial scales or to compensate the ill- 
posed diffusion that naturally arises from nondiffusive schemes applied to equations 
with nonconstant coefficients; if so, it should be treated implicitly to avoid a 
stability restriction due to time differencing of the differential approximation itself. 
However, a controlled amount of dissipation can always be added in any case. The 
differential approximation is seen to be “born implicit.” The scheme used to dif- 
ference it must only be conditionally stable in time with respect to the primitive 
system of equations for the resulting numerical scheme to be unconditionally, 
linearly stable. What we have shown is that since implicit time differencing 
compresses eigenvalues anyway, one can just as well do this from the outset by 
modifying the primitive system of equations appropriately before any discretization 
is applied (contrast Eqs. (7) and Eqs. (3)). 

Since it was seen that only dispersion is needed for the differential approximation 
of an implicit scheme to be linearly stable we present a simplified derivation of 
Eqs. (7) that, although it does not exactly match the differential approximation 
given as Eqs. (5), still retains the essential dispersive truncation error terms. Sup- 
pose we simply substitute Eq. (5a) into Eq. (5b), then the differential approximation 
becomes 

au c At a20 a0 -- 
at 2mi=ci2 (104 

(lob) 

By simply dropping terms linear in At in Eqs. (10) we obtain the same system as 
given by Eqs. (7) with the diffusion in Eq. (7b) also dropped. Since the terms linear 

’ Note that the stabilizing denominator must bc spatially global, like a Fourier k mode. For example, 
the implicit scheme u,” + ’ = u; + (D Ar/Ax*)(u;+ , - 2~;‘~ + uJm, ) for Eq. (1) is useless because it is not 
spatially global. 
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in At only serve to make Eqs. (7) or (10) a first-order approximation to Eqs. (3) 
and do not contribute to stability it is just as well to drop them. The point here is 
that it does not matter whether the terms dropped are small compared to those 
retained in manipulating the differential approximation. We are concerned only 
about stability and consistency with respect to the primitive system we wish to 
solve. 

The vector analog of the coupled scalar wave equations, Eqs. (3), can be written 
as 

au 
at- - -cvxv, 

av 
at' cvxu. 

(114 

(lib) 

Following the same steps as before we find as the analog of Eqs. (7) for the differen- 
tial approximation to a fully implicit time differencing of Eqs. (11) the result 

au 
;if- - -cvxv, 

$+e2AtVxVxv=cVxu. (12b) 

Again dropping the dissipative term linear in At and also considering a solenoidal 
v field, we see that the term to be added implicitly and subtracted explicitly to the 
r.h.s. of Eq. (llb), given any conditionally stable differencing approximation to 
Eqs. (ll), is simply (c* At/4) V’v. The resulting scheme will be unconditionally 
stable and is completely analogous to that given in Eqs. (8). The order of the 
scheme used to difference the differential approximation to a primitive system 
should not be higher than that of the differential approximation itself, else that 
higher order scheme should be used to construct the differential approximation. 

Finally, consider the MHD equations for the magnetic field B and the velocity 
field v written in a simplified form with the pressure neglected and all diagonal 
terms dropped. This sytem becomes 

aB 
ar=V~(v~B), 

aV 
at’ -Bx (VxB). (13b) 

The linearized version of Eqs. (13) describes Alfven waves. We implicitly difference 
this nonlinear system by placing only v and V x B on the r.h.s. of Eqs. (13a) and 
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(13b), respectively, at the n + 1 time level. Then expanding about the n + l/2 time 
level yields as the differential approximation 

(14a) 

(14b) 

Using Eq. (14a) in Eq. (14b) and dropping terms linear in Ar, as illustrated by the 
discussion of Eqs. (lo), yields 

av At2 
t+qBxVxVx (15b) 

This gives ( -At/4) B x V x V x (v x B) as the term to be added implicitly (only with 
respect to v; B is taken as known at the n time level) and subtracted explicitly from 
the r.h.s. of Eq. (15b). This is the semi-implicit MHD term originally derived by 
Harned [ 1,2]. 

As discussed in Ref. [3], the eigenvectors of the simplified “semi-implicit” system 
may not be the same as those of the primitive system. However, this is not always 
true and, in fact, arises only if the semi-implicit term is further simplified as was the 
case in Ref. [3] with the complicated term given in Eq. (15b). To explore this 
consider Eqs. (3) written in matrix form as 

ay 
,,=Ly; L= 

0 c-& 

i i a 0’ 
“ax 

where y = (u, u). Then the differential approximation given as Eqs. (5) is 

aY -=Ly+fgLy. at 

When rewritten in the equivalent form as Eqs. (7) it becomes 

(16) 

(17) 

0 0 
$Ly+Gy; G= c2 At= a3 

--+c”At$ 
(18) 

0 
4 at a% 



CARAMANA 491 

which is desired, since G has lower rank than L and is thus easier to invert. The 
eigenvectors of L, defined by L< = At, 5 = (l,, 5,) readily give for Eq. (18) the result 

(19b) 

which shows that the eigenvectors of L still remain uncoupled so that the semi- 
implicit approximation can be used to faithfully compute eigenvectors of the 
primitive system of equations. 

We now wish to briefly discuss how other implicit schemes fit in and, in fact, are 
a subset of the procedure just outlined [8]. In particular, we now show how the 
ICE algorithm of Harlow and Amsden [9] and the scheme of Robert [lo], which 
he calls “semi-implicit,” tit into our framework. (These appear to be very similiar, 
if not identical, numerical methods.) A second-order accurate ICE scheme applied 
to Eqs. (3) consists in first center differencing them as 

u n+l~u.+qy&g+c!c), 

,.+1=,.+qycg+&J, 

and then putting Eq. (20a) into (20b) to obtain 

(204 

(2Ob) 

Then one first solves Eq. (21) for Y” + ’ (implicit step) and then solves Eq. (20a) 
explicitly for u” + ’ to advance a timestep. 

The approximately implicit result given by Eq. (7) can be differenced in time 
many ways. Suppose after first dropping the diffusive term oc At in Eq. (7b) we 
difference Eqs. (7) as 

v n+l=y+ 

2dt* a*vn+l a2u" 
+ 4 

( 
F--g’ 

> 

u 

Wb) 

(22c) 
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Thus we explicitly predict u*, u at the n + 1 level, using Eq. (22a); next in 
differencing Eq. (7b) we use U* to simply center au/ax in time and invert Eq. (22b) 
to obtain v”+l; and last, we explicitly advance Eq. (22~) to obtain z.P+i to second- 
order accuracy. This is easily verified to be identical to solving Eqs. (21) and (20a) 
in the ICE procedure. Thus we see that the approximately implicit form given by 
Eqs. (7) can be used to arrive at the ICE method, but allows more generality. 

Last, we consider higher order accuracy in time. As pointed out in Ref. (2) this 
can be achieved by iterating on the semi-implicit term. That is, we simply use the 
last value of o at the n + 1 time level in the term that is substracted on the next 
iteration step instead of just using data at the time level n. Thus in place of Eq. (8b) 
we have 

au 
d-un=cAt;jx+a,c2At2 -- (23) 

where the iterates 1= 1,2, . . . are all at the n + 1 time level and, for I= 1, I- 1 is 
replaced by n, the value at the beginning of the timestep. By rewriting u’- u’- ’ as 
v+)n-(u’-l - u”) on the r.h.s. of Eq. (23) and using (u’-- v”)/At = au’/& it follows 
by induction that this iterated scheme can be written as 

(24) 

where the sum is omitted for I = 1. The value of a, needed for stability is determined 
by noting that Eq. (24) represents a sequence given by 

1 1+2y 1+3y+3y2 -____ 
l+y’(1+y)2’ (1+y)3 > . . . . 

for I= 1, 2, 3, . . . . where y = aoc2k2 At*, that multiplies c2k2 At’/4 when Fourier 
analyzed for stability. Therefore we have that a set of I iterates is (At)” order 
accurate and must have a, > Z/4 to be stable. Thus we must use a larger value of 
a, on all steps if we iterate more times. The iteration method given by Eq. (24) can 
simply be implemented as indicated and is seen to be a type of defect correction 
scheme. 

In summary, it has been shown how the method of differential approximation 
can be used to construct simplified implicit schemes that are unconditionally 
linearly stable so that accuracy is the only remaining consideration. This has been 
illustrated by a series of worked examples which it is hoped are sufficiently general 
to suggest how any given system of equations might be investigated via this 
method. The number of terms to be kept in the differential approximation to any 
difference scheme has been given a unique definition. This is that the differential 
approximation require no more initial and boundary data for its solution than does 
the difference scheme. By use of the method of differential approximation the 
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precise relation of semi-implicit time differencing as an approximation to implicit 
differencing is transparent. In addition, how implicit time differencing results in 
stability is also clarified. 
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